The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle

نویسندگان

  • Takumi Chinen
  • Peng Liu
  • Shuya Shioda
  • Judith Pagel
  • Berati Cerikan
  • Tien-Chen Lin
  • Oliver Gruss
  • Yoshiki Hayashi
  • Haruka Takeno
  • Tomohiro Shima
  • Yasushi Okada
  • Ichiro Hayakawa
  • Yoshio Hayashi
  • Hideo Kigoshi
  • Takeo Usui
  • Elmar Schiebel
چکیده

Inhibitors of microtubule (MT) assembly or dynamics that target α/β-tubulin are widely exploited in cancer therapy and biological research. However, specific inhibitors of the MT nucleator γ-tubulin that would allow testing temporal functions of γ-tubulin during the cell cycle are yet to be identified. By evolving β-tubulin-binding drugs we now find that the glaziovianin A derivative gatastatin is a γ-tubulin-specific inhibitor. Gatastatin decreased interphase MT dynamics of human cells without affecting MT number. Gatastatin inhibited assembly of the mitotic spindle in prometaphase. Addition of gatastatin to preformed metaphase spindles altered MT dynamics, reduced the number of growing MTs and shortened spindle length. Furthermore, gatastatin prolonged anaphase duration by affecting anaphase spindle structure, indicating the continuous requirement of MT nucleation during mitosis. Thus, gatastatin facilitates the dissection of the role of γ-tubulin during the cell cycle and reveals the sustained role of γ-tubulin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunocytochemical Study on Microtubule Reorganization in HL-60 Leukemia Cells Undergoing Apoptosis

Background: Microtubules (MT) are important components of cell cytoskeleton and play key roles in cell motility mitosis and meiosis. They are also the targets of several anticancer agents which indicating their importance in maintaining cell viability. Microtubular reorganization contributing to apoptotic morphology occurs in normal and neoplastic cells undergoing apoptosis induced by cytotoxic...

متن کامل

Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin compl...

متن کامل

γ-Tubulin complexes in microtubule nucleation and beyond

Tremendous progress has been made in understanding the functions of γ-tubulin and, in particular, its role in microtubule nucleation since the publication of its discovery in 1989. The structure of γ-tubulin has been determined, and the components of γ-tubulin complexes have been identified. Significant progress in understanding the structure of the γ-tubulin ring complex and its components has...

متن کامل

In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...

متن کامل

In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015